PRINCIPLES OF ANALYSIS LECTURE 23 - INTEGRATION PROPERTIES

PAUL L. BAILEY

Proposition 1. Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ be integrable on [a, b]. Then f + g is integrable on [a, b], and

$$\int_{a}^{b} (f+g) \, dx = \int_{a}^{b} f \, dx + \int_{a}^{b} g \, dx.$$

Proof. Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b]. Then

$$m_f(P,i) + m_g(P,i) \le m_{f+g}(P,i) \le M_{f+g}(P,i) \le M_f(P,i) + M_g(P,i)$$

for every $i = 1, \ldots, n$. Therefore

(1)
$$L_f(P) + L_g(P) \le L_{f+g}(P) \le U_{f+g}(P) \le U_f(P) + U_g(P)$$

Next we would like to say something like this. Since this is true for every partition P, we have

$$\underline{\int}_{a}^{b} f \, dx + \underline{\int}_{a}^{b} g \, dx \leq \underline{\int}_{a}^{b} (f+g) \, dx \leq \overline{\int}_{a}^{b} (f+g) \, dx \leq \overline{\int}_{a}^{b} f \, dx + \overline{\int}_{a}^{b} g \, dx.$$

However, this path actually is more difficult to justify than it first appears. It is easier to proceed as follows:

Inequality (1) implies that

$$(U_f(P) - L_f(P)) + (U_g(P) - L_g(P)) \ge U_{f+g}(P) - L_{f+g}(P) \ge 0.$$

Let $\epsilon > 0$; then there exists a partition P_1 such that $U_f(P_1) - L_f(P_1) < \frac{\epsilon}{2}$, and there exists a partition P_2 such that $U_g(P_2) - L_g(P_2) < \frac{\epsilon}{2}$. Let $P = P_1 \cup P_2$; then

$$U_{f+g}(P) - L_{f+g}(P) \le (U_f(P) - L_f(P)) + (U_g(P) - L_g(P)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Thus f + g is integrable. Moreover, $\int_a^b f \, dx - \frac{\epsilon}{2} < L_f(P)$, $\int_a^b g \, dx - \frac{\epsilon}{2} < L_g(P)$, $\int_a^b f \, dx - \frac{\epsilon}{2} > U_f(P)$, and $\int_a^b g \, dx - \frac{\epsilon}{2} > U_f(P)$; therefore

$$\int_{a}^{b} f \, dx + \int_{a}^{b} g \, dx - \epsilon \le \int_{a}^{b} (f+g) \, dx \le \int_{a}^{b} f \, dx + \int_{a}^{b} g \, dx + \epsilon.$$

Since this is true for every ϵ , we must have

$$\int_{a}^{b} (f+g) \, dx = \int_{a}^{b} f \, dx + \int_{a}^{b} g \, dx.$$

Date: December 1, 2003.

Proposition 2. Let $f : [a,b] \to \mathbb{R}$ be integrable and let $c \in \mathbb{R}$ Then $cf : [a,b] \to \mathbb{R}$ \mathbb{R} is integrable, and

$$\int_{a}^{b} cf \, dx = c \int_{a}^{b} f \, dx$$

Proof. Let $P = \{x_0, \ldots, x_n\}$ be a partition of [a, b]. Then

$$cm_f(P, i) = m_{cf}(P, i) \le M_{cf}(P, i) = cM_f(P, i),$$

for $i = 1, \ldots, n$. Thus

$$cL_f(P) = L_{cf}(P) \le U_{cf}(P) = cU_f(P).$$

Assume $c \ge 0$. Then for any bounded set X, we have $c \sup X = \sup\{cx \mid x \in X\}$. This gives

$$c\int_{-a}^{b} f \, dx = \int_{-a}^{b} cf \, dx \le \overline{\int} cf \, dx = c\overline{\int} f \, dx;$$

since f is integrable, the result follows in this case.

The case of c = -1 we leave as an exercise. It follows from these facts:

- (a) $-m_f(P,i) = M_{-f}(P,i);$ (b) for any hounded set X, we have $-\sup X = \inf\{-x \mid x \in X\}.$

Proposition 3. Let $f : [a,b] \to \mathbb{R}$, and let $c \in [a,b]$. Then f is integrable on [a,b] if and only if f is integrable on [a,c] and on [c,b], in which case we have

$$\int_{a}^{b} f \, dx = \int_{a}^{c} f \, dx + \int_{c}^{b} f \, dx.$$

Proof. Suppose that f is integrable on [a, c] and on [c, b], and let $\epsilon > 0$. Then there exist partitions P_1 of [a, c] and P_2 of [c, b] such that

$$U_f(P_1) - \frac{\epsilon}{4} < \int_a^c f \, dx < L_f(P_1) + \frac{\epsilon}{4},$$

and

$$U_f(P_2) - \frac{\epsilon}{4} < \int_c^b f \, dx < L_f(P_2) + \frac{\epsilon}{4}$$

Let $P = P_1 \cup P_2$; this is a partition of [a, b]. Adding these inequalities yields

$$U_f(P) - \frac{\epsilon}{2} < \int_a^c f \, dx + \int_c^b f \, dx < L_f(P) + \frac{\epsilon}{2}.$$

Therefore $U_f(P) - L_f(P) < \epsilon$, so f is integrable on [a, b], and the above inequality implies that

$$\int_{a}^{b} f \, dx - \frac{\epsilon}{2} < \int_{a}^{c} f \, dx + \int_{c}^{b} f \, dx < \int_{a}^{b} f \, dx + \frac{\epsilon}{2}.$$

Since this is true for every ϵ , we have

$$\int_{a}^{b} f \, dx = \int_{a}^{c} f \, dx + \int_{c}^{b} f \, dx.$$

Suppose that f is integrable on [a, b], and let $\epsilon > 0$. Then there exists a partition $P = \{x_0, \ldots, x_n\}$ such that $U_f(P) - L_f(P) < \epsilon$, and we may assume that $c \in P$, so that $c = x_k$ for some k. Then $P_1 = \{x_0, \ldots, x_k\}$ is a partition of [a, c], and $P_2 = \{x_k, \ldots, x_n\}$ is a partition of [c, b].

Clearly $U_f(P) = U_f(P_1) + U_f(P_2)$ and $L_f(P) = L_f(P_1) + L_f(P_2)$. Then

$$(U_f(P_1) - L_f(P_1)) + (U_f(P_2) - L_f(P_2)) < \epsilon.$$

Since each summand is positive, each is less than epsilon, which proves the f is integrable on [a, c] and on [c, b].

DEPARTMENT OF MATHEMATICS AND CSCI, SOUTHERN ARKANSAS UNIVERSITY *E-mail address*: plbailey@saumag.edu